EU4Environment in Eastern Partner Countries: Water Resources and Environmental Data (ENI/2021/425-550)

SURFACE WATER SURVEY AZERBAIJAN 2023

Contract-No: 20940-C1/AZ-AzeLabLLC-2023/1

EU4Environment in Eastern Partner Countries: Water Resources and Environmental Data (ENI/2021/425-550)

ABOUT THIS REPORT

AUTHORS

Beneficiaries

AzeLab LLC (AZ)

Authors

Ramina AbdullayevaAzeLab LLC Director

Gulgaz Huseynova, AzeLab LLC biologist

Ilaha Gurbanova , AzeLab LLC biologist

Gulnara Abbasova, NHS, center director

Vafadar İsmayilovNHS, center director

Rafig Verdiyev, EU4WD country representative in Azerbaijan (AZ)

Daniel Trauner, Umweltbundesamt GmbH (AT)

Responsible EU member state consortium project leader

Alexander Zinke, Umweltbundesamt GmbH (AT)

EUWI+ country representative in Azerbaijan

RafigVerdiyev (AZ)

Responsible international thematiclead expert

Daniel Trauner, Umweltbundesamt GmbH (AT)

DISCLAIMER

This document was produced with the financial support of the European Union and written by the partners of the EU4Environment – Water and Data consortium. The views expressed herein can in no way be taken to reflect the official opinion of the European Union or the Governments of the Eastern Partnership Countries. This document and any map included herein are without prejudice to the status of, or sovereignty over, any territory, to the delimitation of international frontiers and boundaries, and to the name of any territory, city or area.

Owner and Editor: EU4Environment-Water and Data Consortium

Umweltbundesamt GmbH

1090 Vienna, Austria

Spittelauer Lände 5

Office International de l'Eau (IOW) 21/23 rue de Madrid 75008 Paris, FRANCE

Reproduction is authorised provided the source is acknowledged.

About EU4Environment - Water Resources and Environmental Data

This Programme aims at improving people's wellbeing in EU's Eastern Partner Countries and enabling their green transformation in line with the European Green Deal and the Sustainable Development Goals (SDGs). The programme's activities are clustered around two specific objectives: 1) support a more sustainable use of water resources and 2) improve the use of sound environmental data and their availability for policy-makers and citizens. It ensures continuity of the Shared Environmental Information System Phase II and the EU Water Initiative Plus for Eastern Partnership programmes.

The Programme is implemented by five Partner organisations: Environment Agency Austria (UBA), Austrian Development Agency (ADA), International Office for Water (OiEau) (France), Organisation for Economic Co-operation and Development (OECD), United Nations Economic Commission for Europe (UNECE). The action is co-funded by the European Union, the Austrian Development Cooperation and the French Artois-Picardie Water Agency based on a budget of EUR 12,75 million (EUR 12 million EU contribution). The implementation period is 2021-2024.

https://eu4waterdata.eu

CONTENTS

EXECUTIVE SUMMARY	
1. INTRODUCTION AND SCOPE	9
1.1. SELECTED RIVER BASINS AND SAMPLING SITES	
1.2. QUALITY ELEMENTS AND SAMPLING METHODS	
1.2. QUALITY ELEMENTS AND SAMPLING METHODS 1.3. CHEMICAL ANALYSES	
1.4. Responsibilities	
1.5. QUALITY ASSURANCE	
2. RESULTS	
2.1. FIELD PROTOCOLS AND HYDRO-MORPHOLOGICAL SITE DESCRIPTION	
2.2. CHEMICAL RESULTS	
2.3. BIOLOGICAL RESULTS	
3. DISCUSSION OF RESULTS	
4. NEXT STEPS AND LESSONS LEARNED	
5. ANNEXES	

LIST OF TABLES

Table 1: Parameters analysed in the field and in the laboratory.	9
Table 2: List of sampling sites	. 10
Table 3: Sampling dates, meteorological and hydrological conditions	. 12
Table 4: List of analysed parameters and analytical methods	. 13
Table 5: Responsibilities during the SW Survey 2023	. 14
Table 6: Results of physical and chemical analyses conducted on water samples taken from Kurabasin rivers on 15-20.05.2023	. 16
Table 7: Taxa-list	. 18
Table 8: Results of Ecological Status	. 20

LIST OF FIGURES

ure 1: Map of sampling sites

LIST OF ABBREVIATIONS

Austrian Development Agency
Biological Quality Elements
European Union
EU4Environment in Eastern Partner Countries:
Water Resources and Environmental Data
International Office for Water, France
River Basin Management Plan
Representatives (the local project staff in each country)
Umweltbundesamt GmbH, Environment Agency Austria
Water Framework Directive
Limited Liability Company

Country Specific Abbreviations Azerbaijan

- MENR...... Ministry of Ecology and Natural Resources
- NHS National Hydrometeorological Service

Executive Summary

This report provides the results of the surface water survey conducted in 17 river areas in May 2023.

The involved institutions were the National Hydrometeorological Service, Azelab LLC and the Environment Agency Austria. The activities took place under the Programme "EU4Environment – Water Resources and Environmental Data".

Investigated parameters included hydromorphological site descriptions, physico-chemical analyses, and ecological status assessment based on the biological quality element of benthic invertebrates. At two sites the biological data indicated a good status, four sites showed moderate status, three sites indicated poor status, and four sites were classified a bad status. No macroinvertebrates were found in the samples in the remaining four sites. Overall, the results partly confirm the risk analysis carried out previously for this area, while others show an improvement of the ecological status compared to former investigations. At some sites, the results of the biological and the chemical analyses do not indicate the same level of pressure. Future investigations are necessary in these cases to validate the results and increase the confidence of the ecological status assessment.

This survey was a successful exercise of training and increasing the expertise in surface water sampling and analyses with the goal to make the ecological monitoring in Azerbaijan compliant with the requirements of the European Water Framework Directive.

1. Introduction and Scope

The objective of this survey in spring 2023 was to investigate the current status of the water bodies in the upper Kura basin. The survey was a joint operation by the National Hydrometrological Service of Azerbaijan (HMS), Azelab LLC, and the programme "EU4Environment Water & Data".

The stations to be conducted within the framework of the project were determined by the experts of the National Hydrometrology Service .

Country	Azerbaijan
River basin	Kura, Aras
Campaign ¹⁾	May 2023
Objective	
Quality elements	 Biological quality components: Macrozoobenthos Supporting elements: Hydro-morphological site description General physico-chemical quality elements
Preparation of field work	10.05.2023 – 14.05.2023
Field work	15.05.2023 – 20.05.2023
Chemical analyses	17.05.2023 – 30.05.2023
Biological analyses	22.05.2023 – 25.07.2023

Table 1: Parameters analysed in the field and in the laboratory.

1.1. Selected river basins and sampling sites

Table 2: List of sampling sites

River	River	WB	River	Site	Nr	HMWB	Risk	Significant Pressure ³⁾	Latitude ⁴⁾	Longitude 4)
basin			type			1)	2)			
	Kura-Shikli	Kur011-1-WB002	1	Shikli-2	SW001	No	R	Urban, agricultural and	45.700	41.180
								transboundary impacts		
	Ganjachay	Kur011-3-WB005	2	Downstream	SW002	No	R	Urban and agricultural impacts	46.250	40.420
	Balakanchay	Gan107-2-WB043	5	Balakan city	SW003	No	Nr	Urban and agricultural impacts		
	Talachay	Gan1051-2-WB036	5	Zagatala city	SW004	No	R	Urban and agricultural impacts	46.644598	41.624249
	Talachay	Gan1051-2-WB035	2	Zagatala city (right	SW004.1	Yes	R	Urban and agricultural impacts	46.6445980	41.6242490
Kura		Gal11031-2-008033		bank of the river)						
	Ayrichay	Gan101-5-WB017	2	After reservior	SW005	Yes	R	Agricultural impacts	46.909364	41.238499
	Kanikh	Gan10-3-WB023	1	Before reservior	SW006	No	PR	Urban and agricultural impacts		
	Alijanchay	Kur013-4-WB021	1	Khaldan	SW007	Yes	R	Urban and agricultural impacts	47.2140480	40.719201
	Kura	Kur014-2-WB025	1	Evlakh city	SW008	No	R	Urban and agricultural impacts	47.1681540	40.5940840
	Karasu	Gan104-4-WB032	2	Zardab	SW009	Yes	R	Urban and agricultural impacts	47.42113	40.13311
	Kura	Kur0152-2-WB035	1	Sabirabad	SW010	No	R	Urban and agricultural impacts	48.26135	40.01069
Aras	Aras	Kur0152-2-WB036	2	Saatly	SW011	No	R	Urban and agricultural impacts	48.26216	40.00260
Kura	Kura	Kur015-4-WB037	1	Surra	SW012	No	R	Urban and agricultural impacts	48.31513	40.04108
	Kura	Kur016-1-WB038	1	Shirvan	SW013	No	R	Urban and agricultural impacts	48.53073	39.56590
	Kura	Kur016-1-WB039	1	Salyan	SW014	No	R	Urban and agricultural impacts	48.59118	39.36246
	Kura	Kur016-1-WB040	1	Neftchala	SW015	No	R	Urban and agricultural impacts	49.14526	39.2357
	Kurakchay			Chaykand	*)	Yes	PR		46.311537	40.423769

¹⁾ Assignment as provisional HMWB: yes / no

²⁾ Assignment of the risk status: R = at risk, PR = possibly at risk, NR = not at risk

³⁾ Significant pressure: N = no significant pressure, P = organic pollution, E = eutrophication, T = toxic impact, H = hydro-morphological alterations, M = multi-stressor, O = other, U = unknown

⁴⁾ Latitude, Longitude: Format = Degree with six decimals (e.g. as 44.630139, conversion from 44° 37′ 48.5′′ through calculation 44 + 37 / 60 + 48.5 / 3600)

*) additional sampling site selected during the field campaign

Figure 1: Map of sampling sites

Sampling date	Sampling point	Code	Discharge [m³/s]	River width [m]	Air temperature [°C]
15.05.2023	Kura-Shikli	SW001	520	200	20
	Ganjachay	SW002	2.5	5	14
16.05.2023	Balakanchay	SW003	7.2	2.5	22.4
10.05.2023	Talachay	SW004	0.7	3.5	20
	Talachay(right side)	SW004.1	0.7	3.5	20
	Ayrichay	SW005	0.5	15	21
17.05.2023	Kanikh	SW006	200	1.5	21
	Alijanchay	SW007	20	4	18
	Kura Yevlakh	SW008	150	220	21
18.05.2023	Karasu	SW009	35	15	20
18.05.2025	Kura Sabirabad	SW010	250	19	23
	Kurakchay	-	7	-	14
	Araz-Saatly	SW011	15.5	10	21
19.05.2023	Kura-Surra	SW012	268	20	-
	Kura-Shirvan	SW013	250	18	17
20.05.2023	Kura-Salyan	SW014	230	20	16
20.05.2023	KuraNeftchala	SW015	250	23	23

Table 3: Sampling dates, meteorological and hydrological conditions

1.2. Quality Elements and sampling methods

Biological quality elements:

Macroinvertebrates were sampled according to the multi-habitat sampling (MHS) method developed during EU AQEM and STAR projects.

For a single sample, up to 20 (depending on the heterogenity of sampling site) sub-samples were taken from every sampling site and transported to the laboratory for further analysis (see Annex 1). Rare and endangered animals such as large mussels or crayfish were picked out, documented in the field, and released again. Samples were fixed with ethanol, stored in a cooling box and delivered to the laboratory for sorting and identification.

Where the habitat was suitable, phytobenthos (diatoms) was collected as well (protocol see Annex 2). Identification and analysis of phytobenthos is not part of this report.

Supporting elements:

Hydro-morphological site description where noted and a protocol was filled at each sampling site.

The following general physico-chemical parameters were measured at each site: pH, electrical conductivity, water temperature, dissolved oxygen and oxygen saturation. Chemical analyzes of other parameters were carried out in the laboratory (see below).

Samples were cooled at 4 °C and stored separately according to ISO standard where necessary and transported to the laboratory.

Parameter	Unit	Standard					
Field measurements							
Water temperature	°C	-					
Oxygen concentration	mg/l	ISO 5814					
Oxygen saturation (O 2-Sat)	%	ISO 5814					
рН	-	ISO10523					
Electrical conductivity (EC)	μS/cm	ISO7888					
Laboratory	measurements	·					
Smell		ISO 4121					
Colour		ISO 7887					
Turbidity	FTU (NTU)	ISO 7027					
Temperature	°C	ISO 7027					
Hydrogen indicator, pH	-	ISO 10523					
Electrical conductivity	μS /cm	ISO 7888					
Oxygen concentration	mg/l	ISO 814					
Oxygen saturation (O ₂ -Sat)	%	ISO 5814					
Biological Oxygen Demand (BOD ₅)	mg/l	ISO 5815					
Chemical Oxygen Demand (COD)	mg/l	ISO 6060					
Chloride ion, Cl [−]	mg/l	ISO 9297					
Sulphate ion, SO4 ^{2–}	mg/l	ISO 9280					
Calcium ion, Ca ²⁺	mg/l	ISO 11885					
Magnesium ion, Mg ²⁺	mg/l	ISO 11885					
Sodium, Na ⁺	mg/l	ISO 11885					
Kalium, K⁺	mg/l	ISO 11885					
Orthophosphate ion, PO ₄ ^{3–}	mg/l	ISO 6878					
Ammonium ion, NH₄ ⁺	mg/l	ISO 6777					
Nitrate ion, NO₃ [−]	mg/l	ISO 7890-3					
Suspended solids	mg/l	ISO 11923					

1.3. Chemical analyses

Sample analysis was performed according to ISO standards and relevant SOPs implemented in the laboratory. The list of methods is given in Table 3.

Water temperature (WT), transparency (Tr), dissolved oxygen (DO), oxygen saturation (O2-sat), pH and electrical conductivity (EC) parameters were analysed under both field and laboratory conditions. Other parameters were analysed in the chemical laboratory between 18.05.2023 and 27.05.2023

1.4. Responsibilities

AzeLab LLC is a centralized laboratory of the Ministry of Ecology and Natural Resources. AzeLab LLC is the institution responsible for the analysis and analysis of the main ecological indicators of the environment (water, air, soil) in the Republic of Azerbaijan. According to the charter of AzeLab LLC, it can act as a party in the projects of various organizations within the framework of cooperation. Within the framework of the U4Environment in Eastern Partner Countries: Water Resources and Environmental Data project, AzeLab LLC participated and closely cooperated with the National Hydrometrology Service in the implementation of the project.

AzeLab LLC was responsible in the organization of the necessary equipment for the field measurements, the analysis of the biological and chemical samples , kind contribution, as well as the preparation of the final report.

Responsibilities	Institution, contact person, email-address
General	
Responsible for the organisation of surface water body sampling	Institute: Contact person: RaminaAbdullayeva E-Mail: abdullayevaramina@gmail.com
Field work	
Responsible for field work (biological and chemical sampling, hydro- morphological site description)	Institute: <u>AzeLab LLC, and National Hydrometeorological Service</u> Contact persons: Chemistry:GulnaraAbbasova, E-Mail: <u>gulnara_abbasova1980@mail.ru</u> Biology: Ilaha Gurbanova, E-Mail: <u>gurbanovailahe04@gmail.com</u> Huseynova Gulgaz , E-Mail: gulgez.huseynova85@gmail.com Hydromorphology: VafadarIsmayilov, E-Mail: is_vafadar@mail.ru
Responsible for functional check of sampling equipment	Institute: National Hydrometeorological Service Contact person: GulnaraAbbasova E-Mail: <u>gulnara_abbasova1980@mail.ru</u>
Responsible for calibration of on-site measuring equipment	Institute: National Hydrometeorological Service Contact person: GulnaraAbbasovaE-Mail: gulnara_abbasova1980@mail.ru
Chemical analysis	
Overall responsible for the chemical analysis in the lab, including reporting and data delivery	Institute: AzeLab LLC Contact person: RaminaAbdullayeva E-Mail: <u>abdullayevaramina@gmail.com</u>
Responsible for sample transport from the field to the laboratory	Institute: Sadig LLC Contact person: Mirvari Guliyeva Tel: +994502229989
Analysing laboratory and contact person	Institute: AzeLab LLC Contact person: RaminaAbdullayeva E-Mail: <u>abdullayevaramina@gmail.com</u>

Table 5: Responsibilities during the SW Survey 2023

Responsibilities	Institution, contact person, email-address
Biological analysis	
Overall responsible for the biological analysis in the lab, including reporting and data delivery	Institute: AzeLab LLC Contact person: Ilaha Gurbanova E-Mail: <u>gurbanovailahe04@gmail.com</u>

1.5. Quality assurance

Analyzes were conducted according to ISO standards. The used device, equipment and chemical containers have been checked by the calibration institution and have certificates. Before the analyses, the calibration curves were updated and checked with quality samples.

A sample handover protocol can be found in Annex 5 of this report (seperate document).

2. Results

2.1. Field protocols and hydro-morphological site description

Each Hydro-morphological site descriptions protocols are given in Annex 3 (separate document).

2.2. Chemical results

Table 6: Results of physical and chemical analyses conducted on water samples taken from Kura basin rivers on 15-20.05.2023

Nº	Parameter	Unit of measure- ment	Kura (Shikhli) SW 1	Balakan chay SW 3	Talachay Zagatala SW4	Talachay Zagatala right side SW4.1	Ganjachay down- stream SW2
1	Temperature	°C	25.0	23.0	16.9	17.0	15.7
2	Dissolved oxygen (concentration)	mgO₂/l	7.2	7.1	7.2	4.2	6.0
3	Dissolved oxygen (saturation)	%	82.0	81.0	82.0	81.0	68.0
4	Biochemical oxygen demand (BOD ₅)	mgO ₂ /I	4.8	1.84	1.2	0.6	4.9
5	Chemical oxygen demand (COD)	mgO2/I	5.3	2.3	1.5	0.76	6.1
6	Hydrogen indicator, pH	_	7.87	7.92	7.96	8.01	7.72
7	Electrical conductivity	μS/cm	333	210	239	92.5	303
8	Chloride ion, Cl ⁻	mg/l	12.52	2.64	3.96	4.61	7.25
9	Sulphate ion, SO ₄ ²⁻	mg/l	84.3	76.9	75.9	29.0	75.9
10	Hydrocarbonate ion, HCO ₃ -	mg/l	207.5	109.8	134.2	152.5	207.5
11	Calcium, Ca ²⁺	mg/l	38.6	29.9	30.0	12.2	35.8
12	Magnesium, Mg ²⁺	mg/l	10.0	7.8	7.8	3.2	9.3
13	Sodium, Na⁺	mg/l	1.51	1.08	1.7	0.614	9.18
14	Potassium, K⁺	mg/l	1.4	0.7	2.0	0.5	2.0
15	Total phosphorus, TP	mg/l	0.303	0.352	0.117	0.068	0.123
16	Total dissolved phosphorus, DP	mg/l	0.291	0.312	0.098	0.047	0.105
17	Orthophosphate ion, PO ₄ ^{3–}	mg/l	0.095	0.169	0.0032	0.049	0.085
18	Ammonium ion, NH4 ⁺	mg/l	0.25	<lod< td=""><td><lod< td=""><td><lod< td=""><td>0.97</td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td>0.97</td></lod<></td></lod<>	<lod< td=""><td>0.97</td></lod<>	0.97
19	Nitrite ion, NO ₂ -	mg/l	0.04	<lod< td=""><td><lod< td=""><td><lod< td=""><td>0.44</td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td>0.44</td></lod<></td></lod<>	<lod< td=""><td>0.44</td></lod<>	0.44
15	Nitrate ion, NO ₃ -	mg/l	2.56	2.19	2.14	2.81	2.8
16	Suspended solids	mg/l	359.4	231.8	257.9	205.6	351.4

LOD = limit of detection

Nº	Parameter	Unit of measure ment	Kurakch ay	Ayrichay downs- tream SW 5	Qanıkh before the reservoir SW 6	Alijanchay Khaldan SW 7	Kura Yevlakh SW8	Garasu Zardab SW9
1	Temperature	°C	8.9	18.2	18.5	19.0	18.2	19.0
2	Dissolved oxygen (concentration)	mgO2/I	6.9	7.1	6.1	6.5	6.8	7.0
3	Dissolved oxygen (saturation)	%	80.0	81.0	69.0	73.0	74.0	80.0
4	Biochemical oxygen demand (BOD ₅)	mgO2/I	4.48	8.6	8.9	8.5	9.9	6.96
5	Chemical oxygen demand(COD)	mgO2/I	5.6	10.76	11.1	10.63	12.4	8.7
6	Hydrogen indicator, pH	-	8.3	8.06	8.1	8.0	8.2	8.15
7	Electrical conductivity	μS/cm	154.0	548.0	277.0	886.0	704.0	511.0
8	Chloride ion, Cl ⁻	mg/l	6.6	14.5	7.9	51.4	48.8	15.16
9	Sulphate ion, SO ₄ ²⁻	mg/l	13.57	81.17	56.91	167.3	130.4	115.0
10	Hydrocarbonate ion, HCO ₃ -	mg/l	61.0	176.9	115.9	164.8	146.3	152.6
11	Calcium, Ca ²⁺	mg/l	21.0	64.5	35.1	74.3	70.1	58.9
12	Magnesium, Mg ²⁺	mg/l	5.47	16.8	9.1	19.2	18.2	15.3
13	Sodium, Na⁺	mg/l	1.51	17.2	8.83	61.2	50.9	19.5
14	Potassium, K⁺	mg/l	0.4	4.9	0.1	4.0	4.6	3.5
15	Total phosphorus, TP	mg/l	0.06	0.09	0.033	0.166	0.196	0.078
16	Total dissolved phosphorus, DP	mg/l	0.05	0.07	0.10	0.51	0.16	0.24
17	Orthophosphate ion, PO ₄ ^{3–}	mg/l	0.04	0.06	0.04	<lod< td=""><td><lod< td=""><td>0.07</td></lod<></td></lod<>	<lod< td=""><td>0.07</td></lod<>	0.07
18	Ammonium ion, NH4 ⁺	mg/l	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>
19	Nitrite ion, NO ₂ -	mg/l	0.02	0.02	<lod< td=""><td>0.03</td><td>0.02</td><td>0.02</td></lod<>	0.03	0.02	0.02
15	Nitrate ion, NO ₃ -	mg/l	7.06	1.22	3.18	5.4	2.85	3.29
16	Suspended solids	mg/l	116.8	377.4	237.2	548.3	472.5	383.6

			Kura	ArazSaa	Kura	Kura	Kura	Kura
	Parameter	Unit of	Sabirab	tlı	Surra	Shirvan	Salyan	Nephtc
NՉ	Parameter	measure	ad	SW11	SW12	SW13	SW14	hala
		ment	SW10					SW15
1	Temperature	°C						
2	Dissolved oxygen (concentration)	mgO ₂ /	6.9	6.6	7.1	7.0	6.9	6.6
3	Dissolved oxygen (saturation)	%	82.0	79.0	84.0	83.0	82.0	79.0
4	Biochemical oxygen demand (BOD ₅)	mgO ₂ /l	2.66	4.9	4.2	6.2	3.0	7.0
5	Chemical oxygen demand (COD)	mgO ₂ /l	3.32	6.12	5.3	7.75	3.8	8.7
6	Hydrogen indicator, pH	-	6.6	7.1	7.0	7.6	7.2	7.76
7	Electrical conductivity	μS/cm	933	2340	1018	1147	1214	1237
8	Chloride ion, Cl ⁻	mg/l	61.68	233.97	75.4	96.42	106.35	112.02
9	Sulphate ion, SO ₄ ²⁻	mg/l	196.5	630.0	299.9	264.3	236.0	277.4
10	Hydrocarbonate ion, HCO3 ⁻	mg/l	183.1	213.6	204.5	176.9	177.0	183.1
11	Calcium, Ca ²⁺	mg/l	77.1	204.2	85.7	161.3	176.7	180.9
12	Magnesium, Mg ²⁺	mg/l	20.1	53.1	22.3	41.9	45.9	47.1
13	Sodium, Na⁺	mg/l	82.8	232	86.1	109	122	125
14	Potassium, K⁺	mg/l	3.47	13.8	3.89	5.94	4.09	5.49
15	Total phosphorus, TP	mg/l	0.05	0.02	0.08	0.04	0.082	0.013
16	Total dissolved phosphorus, DP	mg/l	0.04	0.01	0.06	0.02	0.071	0.01
17	Orthophosphate ion, PO ₄ ^{3–}	mg/l	0.02	0.008	0.04	0.01	0.03	0.004
18	Ammonium ion, NH4 ⁺	mg/l	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>
19	Nitrite ion, NO ₂ ⁻	mg/l	0.02	0.28	0.05	0.03	0.01	0.04
15	Nitrate ion, NO ₃ [−]	mg/l	1.36	7.87	5.4	6.43	4.7	5.3
16	Suspended solids	mg/l	626.2	1588.9	783.4	862.3	872.9	936.4

2.3. Biological results

Biological analyses revealed 8 taxonomic groups: Ephemereptera, Trichoptera, Coleptera, Decapoda, Gastropoda, Diptera, Odonata, Amphipoda and Hirudinea. The groups with the highest species diversity were Ephemereptera and Diptera. Macroinvertebrates have been detected by region in the table below. At four sites (Ganjachay SW 02, Garasu SW 9, Kura-Salyan SW 014, Kura-Neftchala SW 015) no macroinvertebrates were detected at all as a results of flooding prior to the sampling date.

Table 7 gives the complete taxa list of benthic invertebrates found and identified at each site.

Table 7: Taxa-list

	River	Class	Order	Family	Genus/Species	Ind		
1	Kura	Crustacea	Decapoda	Gammaridae	Gammarus	6		
2	Ganjachay downstream		No macroinvertebrates in the sample due to flooding					
	Balakanchay- Balakan	Insecta	Trichoptera	Limnephilida	Limnephilinae	6		
		Insecta	Coleptera	Elmidae	Elmis	3		
		Insecta	Ephemeroptera	Heptageniidae	Ecdyonurus macani	5		
3		Insecta	Ephemeroptera	Baetidae	Baetis alpinus	3		
	SW 003	Insecta	Diptera Tabanidae Tabanus		Tabanus	1		
		Insecta	Diptera Empididae Clinocera nigra		Clinocera nigra	5		
		Insecta	Diptera	Chironomidae	Chironomus (Chironomus)	3		
4	Talachay-Zagatala SW 004	Insecta	Diptera	Chironomidae	Chironomus	4		
		Insecta	Trichoptera	Hydropsychidae	Hydropsyche fulvipes/instabilis	4		
		Insecta	Ephemeroptera	Baetidae	Baetis rhodani	87		
		Insecta	Ephemeroptera	Baetidae	Baetis alpinus	6		
	Talachay- Zagatala right side SW 04.1	Insecta	Ephemeroptera	Baetidae	Baetis fuscatus	3		
		Insecta	Ephemeroptera	Heptageniidae	Ecdyonurus macani	85		
5		Insecta	Ephemeroptera	Heptageniidae	Epeorus	6		
		Insecta	Ephemeroptera	Baetidae	Baetis buceratus	7		
		Insecta	Diptera	Simuliidae	Simulium	82		
		Insecta	Diptera	Chironomidae	Chironomus	11		
		Insecta	Diptera	Blephariceridae	Liponeura	6		
		Insecta	Diptera	Stradiomyidae	Odontomya	1		
		Insecta	Trichoptera	Hydropsychidae	Hydropsyche fulvipes/instabilis	37		
	Ayrichay after	Insecta	Ephemereptera	Baetidae	Baetis rhodani	10		
6	reservoir	Insecta	Ephemeroptera	Baetidae	Baetis alpinus	2		
	SW 005	Insecta	Diptera	Simuliidae	Simulium	3		
		Insecta	Diptera	Empididae	Hemerodromia baetica	7		
		Insecta	Trichoptera	Hydropsychidae	Hydropsyche siltalai	31		
		Insecta	Ephemereptera	Baetidae	Baetis rhodani	2		
7	Ganikh(Alazan) mouth SW 006	Insecta	Ephemereptera	Heptageniidae	Ecdyonurus macani	9		
7		Insecta	Diptera	Chironomidae	Chironomus	1		
		Insecta	Diptera	Pediciidae	Dicranota	1		
		Insecta	Diptera	Simuliidae	Simuliinae	11		
	Alijanchay-	Insecta	Ephemereptera	Baetidae	Baetis rhodani	44		
~	Khaldan	Insecta	Ephemereptera	Caenidae	Caenis	68		
8	SW 007	Insecta	Ephemereptera	Heptageniidae	Ecdyonurus macani	7		
		Insecta	Ephemeroptera	Heptageniidae	Heptagenia sulphurea	2		

	River	Class	Order	Family	Genus/Species	Ind
		Insecta	Diptera	Chironomidae	Chironomus (Chironomus)	7
		Insecta	Diptera	Simuliidae	Simuliinae	18
		Annelida	Oligochaeta	Lumbricidae	Lumbricus	1
		Insecta	Trichoptera	Hydropsychidae	Hydropsyche fulvipes/instabilis	146
		Insecta	Odonata	Gomphidae	Gomphus	3
		Insecta	Diptera	Chironomidae	Chironomus (Chironomus)	3
		Crustacea	Decapoda	Gammaridae	Gammarus	49
8	Kura-Yevlakh	Crustacea	Decapoda	Palaemonidae	Palaemon	5
0	SW 008	Crustacea	Decapoda	Gammaridae	Paramysis lacustris	9
		Mollusca	Gastropoda	Bithynidae	Bithynia tentaculata	11
		Annelida	Oligochaeta Lumbricidae Lumbricus		Lumbricus	18
		Annelida	Oligochaeta	Tubificidae	Tubifex	1
		Insecta	Trichoptera	Hydropsychidae	Hydropsyche fulvipes/instabilis	1
11	Kura-Sabirabad	Crustacea	Decapoda	Gammaridae	Paramysis lacustris	18
11	SW 010	Annelida	Oligochaeta	Lumbricidae	Lumbricus	2
		Annelida	Oligochaeta	Tubificidae	Limnodrilus hoffmeisteri	1
	Anna Caatha	Insecta	Diptera	Chironomidae	Chironomus	2
12	Aras- Saatly SW 11	Crustacea	Decapoda	Gammaridae	Gammarus	25
	500 11	Crustacea	Amphipoda	Corophiidae	Corophium robustum	23
		Insecta	Trichoptera	Hydropsychidae	Hydropsyche fulvipes/instabilis	5
		İnsecta	Odonata	Gomphidae	Gomphus	5
	Kura- Surra SW 012	Insecta	Diptera Empididae Clinocera nig		Clinocera nigra	2
		Insecta	Ephemeroptera	Heptageniidae	Ecdyonurus macani	5
13		Insecta	Ephemeroptera Heptageniidae Epeorus		Epeorus	2
		Crustacea	Decapoda	Gammaridae	Gammarus	12
		Crustacea	Decapoda	Gammaridae	Paramysis lacustris	76
		Annelida	lida Oligochaeta Lumbricidae Lumbricus		Lumbricus	2
		Annelida	Oligochaeta	Lumbricidae	Lumbricus variegatus	7
	Kuna Chimnen	Insecta	Trichoptera	Hydropsychidae	Hydropsyche fulvipes/instabilis	2
14	Kura-Shirvan SW 013	Insecta	Ephemeroptera	Heptageniidae	Ecdyonurus macani	1
		Crustacea	Decapoda	Gammaridae	Paramysis lacustris	30
15	Kura-Salyan SW 014		No macroinv	ertebrates in the sar	nple due to flooding	
16	Kura Neftchala SW 015		No macroinv	ertebrates in the sar	nple due to flooding	
		Insecta	Trichoptera	Hydropsychidae	Hydropsyche siltalai	5
		Insecta	Odonata	Lestidae	Lestes sponsa	1
		Insecta	Ephemeroptera	Baetidae	Baetis alpinus	6
	Kurakchay Chaykand	Insecta	Ephemeroptera	Heptageniidae	Epeorus	2
17		Insecta	Ephemeroptera	Ephemeridae	Ephemera	1
17		Insecta	Diptera	Chironomidae	Chironomus (Chironomus)	18
		Insecta	Diptera	Simuliidae	Simuliinae	2
		Insecta	Diptera	Empididae	Clinoceranigra	8
		Insecta	Diptera	Athericidae	Atherix ibis	1
		Annelida	Oligochaeta	Lumbricidae	Lumbriculus variegatus	1

These taxa were then used to determine the biological status using the Ecological Status Classification System1 (ESCS) based on benthic invertebrates developed during the EUWI+ project. Table 7 lists the results of the biological status and compares it to the results of 2022.

Table 8: Results of Ecological Status

River	WB	Site	Site-Nr	HMWB	Risk	Significant Pressure	Latitude	Longitude	Biological Status
Kura	Kur011-1-WB002	Shikhli	SW001	No	R	Urban, agricultural and transboundary impacts	45.700	41.180	5
Ganjachay	Kur011-3-WB005	Downstream	SW002	No	R	Urban and agricultural impacts	46.250	40.420	-
Balakanchay	Gan107-2-WB043	Balakan city	SW003	No	Nr	Urban and agricultural impacts			3
Talachay	Gan1051-2-WB036	Zagatala city	SW004	No	R	Urban and agricultural impacts	46.644598	41.624249	5
Talachay	Gan1051-2-WB035	Zagatala (right bank of the river)	SW04.1	Yes	R	Urban and agricultural impacts	46.6445980	41.6242490	2
Ayrichay	Gan101-5-WB017	After reservoir	SW005	Yes	R	Agricultural impacts	46.909364	41.238499	4
Ganikh(Alazan)	Gan10-3-WB023	Before reservoir	SW006	No	PR	Urban and agricultural impacts			3
Alijanchay	Kur013-4-WB021	Khaldan	SW007	Yes	R	Urban and agricultural impacts	47.2140480	40.719201	3
Kura	Kur014-2-WB025	Yevlakh city	SW008	No	R	Urban and agricultural impacts	47.1681540	40.5940840	4
Karasu	Gan104-4-WB032	Zardab	SW009	Yes	R	Urban and agricultural impacts	47.42113	40.13311	-
Kura	Kur0152-2-WB035	Sabirabad	SW010	No	R	Urban and agricultural impacts	48.26135	40.01069	5
Aras	Kur0152-2-WB036	Saatly	SW011	No	R	Urban and agricultural impacts	48.26216	40.00260	5
Kura	Kur015-4-WB037	Surra	SW012	No	R	Urban and agricultural impacts	48.31513	40.04108	3
Kura	Kur016-1-WB038	Shirvan	SW013	No	R	Urban and agricultural impacts	48.53073	39.56590	4
Kura	Kur016-1-WB039	Salyan	SW014	No	R	Urban and agricultural impacts	48.59118	39.36246	-
Kura	Kur016-1-WB040	Neftchala	SW015	No	R	Urban and agricultural impacts	49.14526	39.2357	-
Kurakchay		Chaykand	*)	Yes	PR		46.311537	40.423769	2

*) additional sampling site selected during the field campaign

3. Discussion of results

Continuous monitoring is important in studying environmental changes. The results of continuous monitoring carried out for many years provide a basis for evaluating the ecological status of environmental objects. By assessing the status of surface water, it is possible to implement protection and restoration measures.

Due to flooding before monitoring, it may affect the quality indicators of the analyses.

Down below we discuss the **results** at each site:

SW001 Kura Shikhli

Bad biological status and only 1 taxa was found. This result does not match the chemical data. Physicochemical analysis indicate good level. Only 1 taxa was found in 2022 too but physico-chemical analysis indicate lower levels of pollution.

SW002 Ganjachay Downstream

No macroinvertebrates were found, probably due to flooding prior to the sampling campaign. Chemical indicators also indicate pollution in the river. In 2022, the biological status was high, and the chemical indicator was at a low level of pollution

SW003 Balakan Balakanchay, SW006 Ganikh (Alazan) mouth

Both sites were classified as moderate based on biological data, whereas the physico-chemical analysis indicates good level.

SW004 Zagatala Talachay

Bad biological status but physico-chemical analysis indicates good level.

SW04.1 Zagatala right side

Biological status and physico-chemical analysis indicate good level.

SW005 Ayrichay below reservoir

Biological status and physico-chemical analysis indicate low lewel.

SW007 Alijanchay, SW012 Kura Surra

Both of them indicate moderate biological status, but the chemical analisys indicate level of pollution.

SW010 Kura Sabirabad, SW011 Aras Saatly

Both sites were classified as bad based on biological data. Looking at the physico-chemical analysis at this site, the results suggest a significant level of pollution.

SW008 Kura Yevlakh

Moderate biological status, the physico-chemical analisys indicate also low level of pollution.

SW009 Kura Zardab, SW014 Kura Salyan, SW015 Kura Neftchala

No macroinvertebrates were found in the sample. Chemical analysis indicates low level pollution.

SW013 Kura Shirvan

Although the biological status shows a deviation from good status, the physico-chemical indicator pollution is classified good.

Kurakchay

It was the first time that research was conducted in this river. Biological status and chemical analysis results were evaluated as good.

Generally, the biological and the physico-chemical data indicated comparable levels of pollution, but in several cases the results did not comply. It is possible that other impacts than physio-chemical stressor affects the biological community. Besides, the class boundaries of physico-chemical and/or biological assessment may be too strict or too relaxed and need to be adjusted.

4. Next steps and Lessons learned

In May 2023, water quality indicators were monitored in the downstream of the main water bodies of the country.

Future monitoring:

Monitoring of transboundary rivers with the Republic of Georgia is planned in October. The goal is to assess the quality indicators of water in the rivers, the ecological status of water resources and to study the additional effects.

During the monitoring conducted in May 2023, biological, chemical and hydromorphological studies were conducted. In order to assess the ecological status of river waters according to the European Water Framework Directive

The basis of the classification of surface water bodies are the Biological Quality Elements (BQE) consisting of fish, macroinvertebrates, phytobenthos, phytoplankton, and macrophytes, while physico-chemistry and hydromorphology act as supporting elements.

Proposal of quality elements:

- Biology
 - Macroinvertebrates (all rivers)
 - Phytobenthos (in small rivers, and were suitable habitat is available)
 - Phytoplankton (in very large rivers and lakes/reservoirs only)
 - Fish and macrophytes will be classified by expert judgment or by using local information (fishermen). If no information is available, these BQE will be included in a later phase. The same is true for macroinvertebrates and phytobenthos in lakes.
- Supporting elements
 - General physico-chemical parameters (all rivers and lakes)
 - Hydromorphology (based on a general classification of the river network)

Not all BQE can be covered at the moment by national means. AzelabLLC would like to add phytobenthos analysis to their expertise in the coming months. During this campaign, diatom samples were taken as a first step but not analysed under the microscope. Further trainings of local experts on this BQE are needed.

For future reports it is recommended to include class boundaries and classification results for the physico-chemical data to allow a better comparison between BQE status assessment and water quality parameters.

5. Annexes

Annex 1: AQEM field protocols (as scans) Annex 2: Protocol for diatom sampling Annex 3: Chemical data summary Annex 4: Biological data summary

Annex 5: Metadata

Annexes are available as separate documents

www.eu4waterdata.eu

Implementing partners

Co-funded by

With funding from 💳 Austrian Development Cooperation

